Insights & EventsTechnologies

5G Core Powering the Future of Connectivity

In the ever-evolving landscape of telecommunications, the advent of 5G stands as a monumental leap forward. Let’s delve deeper into this advanced infrastructure and the pivotal concepts that shape its functionality.

In the ever-evolving landscape of telecommunications, the advent of 5G stands as a monumental leap forward. Beyond just speed, 5G introduces a transformative architecture known as the 5G core (5GC), revolutionizing the way we integrate, connect, and communicate. Let’s delve deeper into this advanced infrastructure and the pivotal concepts that shape its functionality.

Figure 1: High Level 5G Network architecture

The 5G core represents a fundamental shift from its predecessors, embracing a software-defined network architecture, cloud-native virtual network functions, and service-based architecture as well as full separation between the user plane and control plane through the full implementation of CUPS. Within this core, network functions play a pivotal role. These functions, ranging from authentication and policy control to session management and database management, are decoupled and virtualized, allowing for flexibility and scalability previously unseen in telecommunications networks. The Service-Based Architecture (SBA) in 5G represents a paradigm shift in how telecommunications networks are structured and function. At its core, SBA redefines network architecture by organizing various functionalities into modular and reusable services. These services, such as network slicing, authentication, session management, and policy control, are designed to be independent and interact through well-defined interfaces. This modular approach enables flexibility, allowing service providers to dynamically compose and deploy services tailored to specific user needs and applications. SBA facilitates efficient resource utilization, scalability, and rapid innovation, enabling the seamless integration of diverse services and applications across the 5G network.

 Its emphasis on standardized interfaces and service-based components fosters interoperability and encourages an ecosystem where new services can be rapidly developed, deployed, and managed in a more agile and cost-effective manner, ultimately driving the evolution of 5G networks to meet the demands of an increasingly connected world.

Figure 2: 5G core network functions

This cloud-service-based approach in the 5G core revolutionizes how telecommunications networks operate, offering a level of flexibility and scalability crucial for supporting a wide array of services and applications in the 5G era.

Network slicing, a defining feature of 5G, enables the creation of isolated, end-to-end virtual networks tailored to specific services or customer requirements.

By partitioning the network resources, 5G can allocate bandwidth, latency, and other parameters on demand. For instance, a slice designed for autonomous vehicles may prioritize ultra-low latency, ensuring real-time responsiveness, while another slice optimized for IoT devices might emphasize massive connectivity. This ability to customize network characteristics within slices is pivotal in meeting the diverse needs of various industries and applications.

Figure 3: Network Slicing Concept 

As part of 3GPP release 16 the Service Communication Proxy (SCP) has been introduced as a non-mandatory but vital node to have strong SBA deployment in coordination with multi-access edge computing (MEC) and it serves as a pivotal component within the 5G network, facilitating service-based communication between various network functions. Acting as an intermediary, the SCP ensures seamless interaction and coordination between functions such as the policy control function (PCF), user plane function (UPF), and network exposure function (NEF). It enables efficient handling of service requests, ensuring that data and control flow smoothly across the network, ultimately contributing to a robust and responsive network infrastructure and reducing the load on NRF (Network Repository Function)

Figure 4: SCP Function Description

Digis Squared stands out as a pivotal force in the domain of 5G system integration, renowned for its extensive proficiency in deploying both standalone and non-standalone 5G networks. our expertise spans across the entire spectrum of 5G infrastructure, encompassing radio, transport, and core networks. Through a meticulous approach to integration, we at Digis Squared ensure a cohesive and harmonized ecosystem, emphasizing seamless interoperability and optimal performance across these network layers.

Their in-depth understanding of 5G architecture enables us to tailor solutions that precisely address the unique needs and challenges encountered across diverse industries. For instance, in industries like healthcare, manufacturing, automotive, and entertainment, we at Digis Squared customize the integration strategies to accommodate specific requirements, whether it’s ultra-reliable low-latency communication (URLLC) for critical applications or massive machine-type communication (mMTC) for IoT devices as well as for the application that needs the enhanced mobile broadband (eMBB).

Digis Squared’s contributions extend beyond mere integration; they actively shape the 5G landscape by pioneering innovative solutions and best practices. Their role in driving the transition toward a fully connected future is instrumental, as they continuously refine their methodologies to adapt to the evolving demands of the 5G ecosystem. This commitment to innovation positions Digis Squared as a key enabler of the transformative potential inherent in 5G technology, propelling industries, and societies toward a more connected and technologically advanced era.