Revolutionizing Indoor Network Testing with INOS: A Deep Dive into the Enhanced Indoor Kit

Introduction

As mobile networks continue to evolve with 5G, ensuring optimal indoor connectivity is more critical than ever. INOS (Indoor Network Optimization Solution) is redefining how operators and engineers approach indoor testing with its advanced tools, robust features, and a newly upgraded Indoor Kit. Designed to tackle the unique challenges of indoor environments, the INOS Indoor Kit offers significant improvements in software, hardware, and overall functionality to deliver superior usability, reliability, and results.


The Importance of Indoor Testing

Indoor spaces like malls, airports, and office buildings pose unique challenges for network optimization due to:

  • Architectural complexity: Thick walls and multiple floors impede signal propagation.
  • User density: Crowded environments generate high network demand.
  • Interference: Co-channel interference can degrade signal quality.

These challenges make precise and efficient indoor network testing crucial for delivering seamless connectivity.


Enhancements in the INOS Indoor Kit

Software Improvements (Icons)

  1. Revamped User Interface (UI):
    The new UI offers an intuitive design for enhanced accessibility, streamlining control, and monitoring processes for users.
  2. Enhanced Connectivity Options:
    Supporting Internet, WLAN, and Bluetooth connections, the kit provides robust and flexible inter-device connectivity.
  3. Comprehensive Control Capabilities:
    The tablet serves as a central hub, allowing users to control every connected device and monitor KPIs directly.
  4. Centralized Alarm Notifications:
    Alarm notifications from all connected devices are displayed on the tablet in real-time, enabling prompt troubleshooting.

Hardware Upgrades

  1. Ergonomic and Lightweight Design:
    A portable, lighter design ensures ease of use in various indoor scenarios.
  2. Extended Battery Life:
    Powering up to 12 devices for 8 hours of continuous operation, the kit supports long-duration tasks without frequent recharging.
  3. Smart Cooling System:
    An intelligent cooling mechanism activates based on system temperature, ensuring consistent performance without overheating.

Key Features and Differentiators

The INOS Indoor Kit offers several standout features that set it apart from competitors:

  1. 5G Support Across All Devices:
    Fully optimized for 5G testing, supporting all devices within the kit to handle the latest network demands.
  2. Tablet as a Centralized Display:
    Displays real-time radio KPIs, with intuitive visualizations and insights for quick decision-making.
  3. Advanced Device Management via Tablet:
    • Control multiple phones directly.
    • Color-coded indicators highlight synced devices, poor KPIs, and ongoing logfile recordings, allowing users to focus on critical areas.
  4. Support for Large Layout Images:
    Unlike competitors, INOS excels at handling and displaying large indoor layouts, ensuring no testing area is overlooked.
  5. Automated Processes:
    • Logfile Uploading and Collection: Eliminates manual intervention, saving time and effort.
    • Post-Processing Automation: Simplifies report generation and routine tasks that traditionally require manual copy-paste workflows.
  6. Comprehensive Support Model:
    INOS provides end-to-end support for all product aspects, ensuring users have the help they need at every stage.
  7. Expandable Kit Design:
    Offers the flexibility to add more devices, making it adaptable to different indoor testing scales.
  8. Enhanced Connectivity:
    INOS leverages Internet, WLAN, and Bluetooth for device control, overcoming the limitations of competitors who rely solely on Bluetooth (limited to 8 devices and prone to connectivity issues).

Why INOS Stands Out in Indoor Testing

INOS combines cutting-edge technology with user-centric design to deliver a superior indoor testing experience. With its latest enhancements, it ensures that telecom operators and network engineers have the tools they need to achieve:

  •  Unmatched Accuracy: Collect and analyze data with precision.
  • Greater Efficiency: Streamlined workflows and automation save time and effort.
  • Enhanced Portability: Lightweight design and extended battery life make it perfect for demanding indoor environments.

Conclusion

The INOS Indoor Kit, with its latest software and hardware upgrades, is a game-changer for indoor network optimization. By focusing on usability, functionality, and reliability, it empowers operators to tackle even the most challenging scenarios with confidence.

Ready to elevate your indoor testing? Discover how the enhanced INOS Indoor Kit can revolutionize your network optimization strategy.

This blog post was written by Amr AshrafProduct Architect and Support Director at Digis Squared. With extensive experience in telecom solutions and AI-driven technologies, Amr plays a key role in developing and optimizing our innovative products to enhance network performance and operational efficiency.

AI-Driven RAN: Transforming Network Operations for the Future

Challenges Facing Mobile Network Operators (MNOs)

As mobile networks evolve to support increasing data demand, Mobile Network Operators (MNOs) face several critical challenges:

1. Rising CAPEX Due to Network Expansions

With the rollout of 5G and upcoming 6G advancements, MNOs must invest heavily in network expansion, including:

  • Deploying new sites to enhance coverage and capacity.
  • Upgrading existing infrastructure to support new technologies.
  • Investing in advanced hardware, software, and spectrum licenses.

2. Growing Network Complexity

As networks integrate multiple generations of technology (2G, 3G, 4G, 5G, and soon 6G), managing this complexity becomes a major challenge. Key concerns include:

  • Optimizing the placement of new sites to maximize coverage and efficiency.
  • Choosing the right hardware, licenses, and features to balance performance and cost.
  • Ensuring seamless interworking between legacy and new network elements.

3. Increasing OPEX Due to Operations and Maintenance

Operational expenditures continue to rise due to:

  • The increasing number of managed services personnel and field engineers.
  • The complexity of maintaining multi-layer, multi-vendor networks.
  • The need for continuous network optimization to ensure service quality.
  • Rising Energy Costs: Powering an expanding network infrastructure requires substantial energy consumption, and increasing energy prices put further pressure on operational budgets. AI-driven solutions can optimize power usage, reduce waste, and shift energy consumption to off-peak times where feasible.

4. Competitive Pressures in Customer Experience & Network Quality

MNOs are not only competing on price and service offerings but also on:

  • Network Quality: Coverage, speed, and reliability.
  • Customer Experience: Personalized and high-quality connectivity.
  • Operational Efficiency: Cost-effective operations that enhance profitability.

The Concept of AI in RAN

To address these challenges, AI-driven Radio Access Networks (AI-RAN) emerge as a key enabler. AI-RAN leverages artificial intelligence and machine learning to:

  • Optimize network planning and resource allocation.
  • Automate operations, reducing manual interventions.
  • Enhance predictive maintenance to prevent failures before they occur.
  • Improve energy efficiency by dynamically adjusting power consumption based on traffic demand.

Different AI-RAN Methodologies

  1. AI and RAN
    • AI and RAN (also referred to as AI with RAN): using a common shared infrastructure to run both AI and workloads, with the goal to maximize utilization, lower Total Cost of Ownership (TCO) and generate new AI-driven revenue opportunities.
    • AI is used as an external tool for decision-making and analytics without direct integration into the RAN architecture.
    • Example: AI-driven network planning tools that assist in site selection and spectrum allocation.
  2. AI on RAN
    • AI on RAN: enabling AI services on RAN at the network edge to increase operational efficiency and offer new services to mobile users. This turns the RAN from a cost centre to a revenue source.
    • AI is embedded within the RAN system to enhance real-time decision-making.
    • Example: AI-powered self-optimizing networks (SON) that adjust parameters dynamically to improve network performance.
  3. AI for RAN
    • AI for RAN: advancing RAN capabilities through embedding AI/ML models, algorithms and neural networks into the radio signal processing layer to improve spectral efficiency, radio coverage, capacity and performance.
    • AI is leveraged to redesign RAN architecture for autonomous and intelligent network operations.
    • Example: AI-native Open RAN solutions that enable dynamic reconfiguration of network functions.

Source is NVidia AI-RAN: Artificial Intelligence – Radio Access Networks Document.

Organizations and Standardization Bodies Focusing on AI-RAN

Several industry bodies and alliances are driving AI adoption in RAN, including:

  • O-RAN Alliance: Developing AI-native Open RAN architectures.
  • 3GPP: Standardizing AI/ML applications in RAN.
  • ETSI (European Telecommunications Standards Institute): Working on AI-powered network automation.
  • ITU (International Telecommunication Union): AI for good to promote the AI use cases
  • GSMA: Promoting AI-driven innovations for future networks.
  • Global Telco AI Alliance: A collaboration among leading telecom operators to advance AI integration in network operations and RAN management.

AI-RAN Use Cases

  1. Intelligent Network Planning
    • AI-driven tools analyse coverage gaps and predict optimal site locations for new deployments.
    • Uses geospatial and traffic data to optimize CAPEX investments.
    • Improves network rollout efficiency by identifying areas with the highest potential return on investment.
  1. Automated Network Optimization
    • AI-powered SON dynamically adjusts network parameters.
    • Enhances performance by minimizing congestion and interference.
    • Predicts and mitigates traffic spikes in real-time, improving service stability.
  2. Predictive Maintenance
    • AI detects anomalies in hardware and predicts failures before they happen.
    • Uses machine learning models to analyze historical data and identify patterns leading to failures.
    • Reduces downtime and minimizes maintenance costs by enabling proactive issue resolution.
  3. Energy Efficiency Optimization
    • AI adjusts power consumption based on real-time traffic patterns.
    • Identifies opportunities for network elements to enter low-power modes during off-peak hours.
    • Leads to significant OPEX savings and a reduced carbon footprint by optimizing renewable energy integration.
  1. Enhanced Customer Experience Management
    • AI-driven analytics personalize network performance based on user behavior.
    • Predicts and prioritizes network resources for latency-sensitive applications like gaming and video streaming.
    • Uses AI-driven call quality analysis to detect and rectify issues before customers notice degradation.
    •  
  2. AI-Driven Interference Management
    • AI models analyze interference patterns and dynamically adjust power levels and beamforming strategies.
    • Reduces interference between cells and enhances spectral efficiency, especially in dense urban areas.
  3. Supply Chain and Inventory Optimization
    • AI helps predict hardware and component needs based on network demand forecasts.
    • Reduces overstocking and minimizes delays by ensuring the right components are available when needed.
  4. AI-Driven Beamforming Management
    • AI optimizes beamforming parameters to improve signal strength and reduce interference.
    • Dynamically adjusts beam directions based on real-time user movement and network conditions.
    • Enhances network coverage and capacity, particularly in urban and high-density environments.

Conclusion

AI is revolutionizing RAN by enhancing efficiency, reducing costs, and improving network performance. As AI adoption in RAN continues to grow, MNOs can expect increased automation, better customer experiences, and more cost-effective network operations. The journey toward AI-driven RAN is not just an evolution—it is a necessity for the future of mobile networks.

To further illustrate these advancements, incorporating graphs that highlight AI’s impact on OPEX reduction, predictive maintenance efficiency, and energy savings will help visualize the benefits AI brings to RAN operations.

Prepared By: Abdelrahman Fady | CTO | Digis Squared

Optimizing LTE 450MHz Networks with INOS 

Introduction 

The demand for reliable, high-coverage wireless communication is increasing, particularly for mission-critical applications, rural connectivity, and industrial deployments. LTE 450MHz (Band 31) is an excellent solution due to its superior propagation characteristics, providing extensive coverage with fewer base stations. However, the availability of compatible commercial handsets remains limited, creating challenges for operators and network engineers in testing and optimizing LTE 450MHz deployments. 

To overcome these challenges, DIGIS Squared is leveraging its advanced network testing tool, INOS, integrated with ruggedized testing devices such as the RugGear RG760. This article explores how INOS enables efficient testing, optimization, and deployment of LTE 450MHz networks without relying on traditional consumer handsets. 

The Challenge of LTE 450MHz Testing 

LTE 450MHz is an essential frequency band for sectors such as utilities, public safety, and IoT applications. The band’s key advantages include: 

  • Longer range: Due to its low frequency, LTE 450MHz signals propagate further, covering large geographical areas with minimal infrastructure. 
  • Better penetration: It ensures superior indoor and underground coverage, crucial for industrial sites and emergency services. 
  • Low network congestion: Given its niche application, LTE 450MHz networks often experience less congestion than conventional LTE bands. 

However, network operators and service providers face significant hurdles in testing and optimizing LTE 450MHz due to the lack of commercially available handsets supporting Band 31. Traditional methods of network optimization rely on consumer devices, which are not widely available for this band. 

Introducing INOS: A Comprehensive Drive Test Solution 

INOS is a state-of-the-art, vendor-agnostic network testing and optimization tool developed by DIGIS Squared. It allows operators to: 

  • Conduct extensive drive tests and walk tests with real-time data collection. 
  • Analyze Key Performance Indicators (KPIs) such as RSRP, RSRQ, SINR, throughput, and latency. 
  • Evaluate handover performance, coverage gaps, and network interference. 
  • Benchmark networks across multiple operators. 
  • Generate comprehensive reports with actionable insights for optimization. 

INOS eliminates the dependency on consumer devices, making it an ideal solution for LTE 450MHz testing. 

How INOS Enhances LTE 450MHz Testing 

1. Seamless Data Collection 

INOS allows seamless data collection for LTE 450MHz performance analysis. Engineers can conduct extensive tests using professional-grade testing devices like the RugGear RG760. 

2. Comprehensive Performance Monitoring 

INOS enables engineers to monitor key LTE 450MHz performance metrics, including: 

  • Signal strength and quality (RSRP, RSRQ, SINR). 
  • Throughput measurements for downlink and uplink speeds. 
  • Handover success rates and network transitions. 
  • Coverage mapping with real-time GPS tracking. 

3. Efficient Deployment & Troubleshooting 

Using INOS streamlines the LTE 450MHz deployment process by: 

  • Identifying weak coverage areas before commercial rollout. 
  • Troubleshooting network performance issues in real-time. 
  • Validating base station configurations and antenna alignments. 

4. Cost-Effective & Scalable Testing 

By using INOS instead of expensive proprietary testing hardware, operators can achieve a cost-effective and scalable testing framework. 

Real-World Applications 

1. Private LTE Networks 

Organizations deploying private LTE networks in critical industries (e.g., mining, utilities, emergency services) can use INOS to ensure optimal network performance and coverage. 

2. Smart Grids & Utilities 

With LTE 450MHz playing a key role in smart grids and utilities, INOS facilitates efficient network optimization, ensuring stable communication between smart meters and control centers. 

3. Public Safety & Emergency Response 

For first responders relying on LTE 450MHz for mission-critical communications, INOS ensures that networks meet the required service quality and reliability standards. 

4. Rural & Remote Connectivity 

Operators extending connectivity to underserved areas can leverage INOS to validate coverage, optimize handovers, and enhance user experience. 

Conclusion 

Testing and optimizing LTE 450MHz networks have historically been challenging due to the limited availability of compatible handsets. By leveraging the powerful capabilities of INOS, DIGIS Squared provides a cutting-edge solution for network operators to efficiently deploy and maintain LTE 450MHz networks. 

With INOS, operators can conduct extensive drive tests, analyze network KPIs, and troubleshoot issues in real-time, ensuring seamless connectivity for industries relying on LTE 450MHz. As the demand for private LTE networks grows, INOS represents a game-changer in network testing and optimization. 

For more information on how INOS can enhance your LTE 450MHz deployment, contact DIGIS Squared today! 

————————————————————————————————————————————-

This blog post was written by Amr AshrafProduct Architect and Support Director at Digis Squared. With extensive experience in telecom solutions and AI-driven technologies, Amr plays a key role in developing and optimizing our innovative products to enhance network performance and operational efficiency.

AI and Machine Learning Integration in 6G: DIGIS Squared’s Role in Shaping the Future

As the journey from 5G to 6G unfolds, the integration of Artificial Intelligence (AI) and Machine Learning (ML) is not just a feature—it’s a game-changer for wireless networks. With 6G poised to redefine connectivity, DIGIS Squared is at the forefront, driving innovation to unlock the potential of AI-powered networks.

The Critical Role of AI in 6G

6G networks aim to deliver not just faster speeds but smarter and more adaptive communication. AI is the key enabler for these advancements, addressing the complexity of next-generation networks by providing:

  • Autonomous Optimization: AI enables networks to self-learn and adapt in real-time, ensuring optimal performance even under rapidly changing conditions.
  • Dynamic Spectrum Management: Efficient use of spectrum resources is critical in 6G. AI-driven algorithms analyze and allocate frequencies dynamically, maximizing capacity and minimizing interference.
  • User-Centric Experiences: Personalization will reach new heights as AI tailors network resources to individual user needs, supporting applications like AR, VR, and holographic communication.

DIGIS Squared’s Role

DIGIS Squared is leveraging its expertise in AI and telecommunications to pioneer innovative solutions for 6G networks. By integrating domain-specific AI models with advanced network infrastructure, DIGIS Squared is working on:

  • AI-Driven Network Automation: Developing tools to automate configuration, monitoring, and troubleshooting for future networks.
  • Predictive Analytics: Enhancing network reliability by predicting and addressing potential issues before they impact users.
  • Enhanced IoT Connectivity: Creating intelligent frameworks to manage the explosive growth of IoT devices seamlessly.

This commitment ensures DIGIS Squared remains a leader in the global 6G ecosystem.

New Horizons for AI-Integrated Networks

With AI at its core, 6G is set to unlock transformative use cases:

  • Holographic Telepresence: Imagine lifelike, three-dimensional communication that feels as real as being there in person.
  • Self-Healing Networks: AI will enable networks to diagnose and resolve issues autonomously, ensuring uninterrupted connectivity.
  • Sustainable Connectivity: Energy-efficient AI models will align with 6G’s goal of reducing environmental impact while delivering superior performance.

Challenges to Overcome

While the opportunities are vast, challenges remain. These include ensuring data privacy, developing energy-efficient AI models, and achieving global standardization. DIGIS Squared is addressing these challenges by collaborating with industry partners, contributing to standardization efforts, and innovating in sustainable AI-driven technologies.

The Future Awaits

The integration of AI in 6G is more than a technical evolution; it’s a revolution that will transform industries and everyday life. DIGIS Squared is proud to play a pivotal role in this transformation, shaping a smarter, more connected future for all.

————————————————————————————————————————————-

This blog post was written by Amr Ashraf, Product Architect and Support Director at Digis Squared. With extensive experience in telecom solutions and AI-driven technologies, Amr plays a key role in developing and optimizing our innovative products to enhance network performance and operational efficiency.

Intelligent Reflecting Surfaces (IRS)

Paving the Way for 6G Connectivity. As we are only a few years away from the 6G era, one of the transformative technologies shaping the future of wireless communication is Intelligent Reflecting Surfaces (IRS). But what exactly is IRS, and why is it so critical for 6G? Let us dive in.
 
What is IRS?
An Intelligent Reflecting Surface is a planar structure composed of programmable, passive elements (often metasurfaces) that can reflect and manipulate electromagnetic waves. Unlike traditional antennas, IRS is not active device and doesn’t emit or amplify signals. Instead, it reconfigures the wireless environment by dynamically adjusting the phase, amplitude, and polarisation of reflected signals creating an optimized communication pathway between the transmitter(gNB) and receiver
(Handset).
In Real-World Context: Imagine IRS as a “smart mirror” for wireless signals, capable of bending and redirecting communication waves with unprecedented precision.
 
IRS Architecture
IRS typically consists of three key components:
Metasurface: Comprising numerous sub-wavelength elements, each capable of independently tuning the reflected signal.
Controller: A central unit that dynamically configures the metasurface based on real-time channel conditions.
Communication Link: A connection to the base station or network orchestrating the IRS behaviour in response to the environment.
 
Key Advantages Of IRS in 6G:

1- Enhanced Signal Coverage: By intelligently reflecting signals, IRS helps overcome obstacles and dead zones in challenging environments.
2- Noise Mitigation: the reflectors work on noise suppression beside their work on signal amplification
3- Beamforming simplification: with IRS beamforming became much easier than before
4- Throughput improvement: as a direct result of coverage improvement, noise mitigation amd beamforming efficiency improvements the user data rates are significantly better than before.
5- Energy Efficiency: IRS is a passive system, significantly reducing power consumption compared to active communication devices.
6- Improved Spectral Efficiency: By dynamically steering signals, IRS enhances the overall system capacity.
7- Sustainability: Its low power usage aligns with the green communication goals of 6G.
8- CAPEX reduction : boosting the single site coverage will lead to less number of needed sites and consequently this will reduce the overall CAPEX of 6G deployment.

Now let’s see where we can deploy the IRS,
Infrastructure Deployment Locations:
– Buildings and Structures
– High-rise office complexes
– Shopping malls
– Hospitals and healthcare facilities
– Industrial campuses
– Data centers
– Smart city infrastructure

Aerial and Mobile Platforms
– Unmanned Aerial Vehicles (UAVs)
– Autonomous vehicles
– Public transportation systems
– Maritime vessels
– Satellite communication links

Urban and Environmental Contexts
– Streetlamp posts
– Traffic signal infrastructure
– Building facades
– Public transportation hubs
– Underground transit systems
– Bridges and overpasses

Specialized Deployment Zones
– Remote research stations
– Military and defense installations
– Emergency communication networks
– Disaster response infrastructure
– Agricultural monitoring systems
– Renewable energy monitoring sites
 
It is obviously clear that IRS deployment options are diversified and versatile now let’s discuss more the deployment considerations, here you are some Key Factors for IRS Placement:
1- Signal propagation characteristics
2- Environmental obstacles
3- Population density
4-Existing communication infrastructure
5-Cost-effectiveness of implementation
6- Long-term maintenance requirements

Use Cases of IRS
•Urban Connectivity, overcome obstacles in dense urban areas where signal blockage is common.
•Indoor Networks, Boost signal strength in offices, malls, and homes by managing reflections.
•IoT Application, Provide reliable connectivity to low-power IoT devices in complex environments.
•Smart Cities, Enable seamless connectivity for autonomous vehicles, drones, and smart infrastructure.
•Ubiquitous NTN coverage, extension of satellite D2C / D2D coverage and enhance the coverage provided by HAPs
•Terahertz Enablement, by boosting the coverage of extremely high frequency range signals IRS consider as a real enabler for terahertz connectivity.

While promising, IRS technologies are not without challenges:
1- Complex channel modeling requires advanced computational techniques

2- Initial deployment costs can be significant
3- Potential interference issues in dense multi-user environments
4- Ongoing research needed to optimize performance across varied scenarios
5- Mobility managment will be one of the big challenges of IRS deployment
6- Meticulous design and where exactly to deploy the IRS avoiding EHS issues
 
As we embrace 6G, IRS offers an exciting opportunity to reimagine wireless networks. By transforming passive environments into active contributors to communication, IRS isn’t just an enhancement—it’s a revolution.

A 2023 study by Nokia Bell Labs demonstrated IRS can improve network coverage by up to 40% in urban environments, showcasing its transformative potential.

RIS (reconfigurable intelligent surfaces) is an advanced modern form of IRS where in RIS we have the capability to dynamically change the phase and current of the propagated wave in sub-millisecond period

MIT Media Lab Research (2023) developed dynamic metasurface with sub-millisecond reconfiguration, created IRS capable of adapting to changing wireless environments in real-time, reduced energy consumption by up to 60% compared to traditional signal amplification methods.

Prepared By: Abdelrahman Fady | CTO | Digis Squared

Why Service Providers Should Go Vendor-Agnostic?

Being a vendor-agnostic managed services provider (MSP) offers several strategic advantages, particularly in today’s diverse and rapidly changing technology landscape. Here are some key benefits:

1. Flexibility and Customization for Clients

  • Tailored Solutions: Vendor-agnostic MSPs aren’t bound to specific hardware or software brands, allowing them to provide tailored solutions that best meet each client’s unique needs.
  • Seamless Integration: This approach allows MSPs to integrate diverse technologies, which is especially beneficial for clients with existing systems from various vendors. It ensures compatibility across different platforms and systems.

2. Improved Trust and Objectivity

  • Unbiased Recommendations: Without vendor affiliations, MSPs can provide impartial advice focused solely on the client’s business goals rather than pushing products from specific vendors.
  • Enhanced Credibility: Clients often see vendor-agnostic MSPs as more credible partners, as they know recommendations are based purely on quality and suitability, not vendor relationships.

3. Access to Best-of-Breed Technology

  • Greater Variety of Options: Vendor-agnostic MSPs have access to a broad spectrum of technologies, enabling them to choose the best-in-class products for any given solution.
  • Rapid Adaptation to Industry Trends: They can quickly adopt new and emerging technologies, providing clients with up-to-date solutions without being locked into a single vendor’s product lifecycle.

4. Reduced Vendor Lock-In Risks

  • Enhanced Flexibility for Clients: By working with a vendor-agnostic MSP, clients avoid becoming dependent on a single vendor, which reduces risks associated with vendor-specific limitations, such as pricing changes or service discontinuation.
  • Easier Transition and Upgrades: Clients can transition to new technology or upgrade their systems without having to overhaul their entire infrastructure, preserving both continuity and cost efficiency.

5. Broader Industry Knowledge and Expertise

  • Cross-Vendor Knowledge: A vendor-agnostic MSP is typically skilled in managing and troubleshooting a wide range of technologies, offering clients a broader knowledge base and deeper expertise.
  • Continuous Skill Development: MSPs that work with multiple vendors stay current across different technologies, tools, and standards, ensuring that they bring industry-wide best practices to each engagement.

6. Enhanced Scalability and Future-Proofing

  • Adaptable Scaling Options: Vendor-agnostic MSPs can scale services up or down, choosing the most effective tools and vendors for each stage of growth, enabling clients to expand or streamline without limits.
  • Future-Proof Solutions: Without a commitment to specific vendors, MSPs can more readily integrate cutting-edge technologies as they emerge, helping clients future-proof their operations and remain competitive.

7. Cost Savings for Clients

  • Optimized Pricing Structures: Vendor-agnostic MSPs can select the most cost-effective solutions for each situation, maximizing value without unnecessary expenses tied to specific vendor pricing models.
  • Elimination of Unnecessary Licensing Fees: By evaluating multiple vendor options, they can choose solutions that reduce or eliminate redundant licensing costs, allowing clients to optimize their budgets.

8. Enhanced Service Continuity and Reliability

  • Improved Vendor Alternatives: In case of vendor issues or service interruptions, vendor-agnostic MSPs can provide alternative solutions more easily, maintaining continuity without significant disruption.
  • Better Risk Mitigation: By using multiple vendor solutions, MSPs can create redundancies and implement failover options, reducing the impact of any single vendor failure.

Summary

A vendor-agnostic MSP can offer unbiased, flexible, and future-proof solutions, giving clients greater control over their technology stack while maximizing cost-efficiency and operational resilience. This approach builds trust, meets diverse client needs, and provides a competitive edge by adapting to market changes and emerging technology with agility.

Author: Ahmed Zein, Digis Squared’s COO, and expert in Managed Services excellence and Operations.

Cross-Sector Detection

In today’s fast-paced telecom industry, delivering optimal network performance is essential to ensuring seamless user experiences. One significant challenge operators face is cross-sector and other issues that are affecting the overall performance of the network these issues may be related to Antenna configurations, this type of issues includes but is not limited to, wrong or shifted azimuths and other wrong configurations, or maybe hardware problems that cause down sectors. At Digis Squared, we’ve taken a bold step forward by developing an advanced AI-based algorithm that detects these kinds of issues using data gathered from drive tests in no time compared with the traditional ways. This cutting-edge solution promises to significantly reduce the time it takes to improve network performance and streamline operational costs.

Understanding Cross-Sector Problem

The cross-sector problem occurs when a mobile device connects to a sector of a cell tower that is not intended to serve its location. This typically happens due to antenna misalignment, hardware problem, or wrong configuration. As a result, the device experiences degraded performance such as signal interference, increased latency, or reduced data throughput. Additionally, the network resources of the unintended sector may be strained, impacting overall efficiency. Resolving this issue is essential for improving coverage availability and enhancing user experience in mobile networks.

Why do we need such an algorithm?

The detection of cross-sector and other problems currently requires a lot of resources (time, skilled engineers, and for sure that costs a lot of money), it may take multiple hours or days for a team to be able to investigate a drive test from one cluster, and this time is proportional to the size and complexity of the network and the surrounding environment.

In addition to that, operators are trying to solve these issues as fast as possible because by solving such issues the operators can ensure solving their consequences like:

  • Network Congestion: Too many users connected to a single sector can cause overloading, reducing data speeds and overall network performance.
  • Interference: Cross-sector interference happens when neighboring sectors overlap in coverage, causing signal degradation.
  • Inefficient Resource Use: If users are connected to a less optimal sector, network resources such as bandwidth and power are not used efficiently.

Our tool aims to ensure fast and accurate detection and reporting of cross-sector and other issues to accelerate solving related network problems to enable the users to receive the best quality of service and use the network resources.

The solution:

At Digis Squared, we have developed a novel AI-based algorithm specifically designed to detect issues that we have mentioned earlier by analyzing data collected from drive tests. This algorithm leverages AI, advanced signal processing techniques, and fast processing and analytics to automatically identify when a device is connected to a suboptimal sector.

in less than a few minutes, you can have an accurate and comprehensive report about the cross-sector and other issues found in the network.

Benefits for Telecom Operators

  • Improved Network Performance: By accurately detecting and resolving these issues, operators can enhance network efficiency and provide a better user experience by minimizing interference and improving data throughput.
  • Cost Efficiency: Automating the detection of cross-sector and other problems reduces the need for manual analysis and network intervention, which can significantly lower operational expenses (OPEX).
  • Faster Optimization: With the ability to process data and generate insights with that speed, operators can implement network changes more rapidly, ensuring that the network performs optimally at all times.

Conclusion

At Digis Squared, we are committed to pushing the boundaries of network optimization technology. Our algorithm for antenna issues detection represents a major leap forward in network management, offering telecom operators a more efficient, automated, and accurate method for resolving issues and ensuring a better user experience. By harnessing AI, and multi-metric analysis, we are enabling smarter, more resilient networks that are ready to meet the demands of the future.

Stay tuned for more updates on how this algorithm is transforming networks around the globe.

INOS VMOS Assessment Tool: Redefining Video Quality Assessment for OTT Video

The INOS Video Mean Opinion Score (VMOS) Assessment Tool represents a groundbreaking advancement in evaluating both User Quality-of-Experience (QoE) and Network Quality of Service (QoS) for adaptive video streaming on Facebook. By seamlessly merging these critical aspects, the tool delivers unparalleled benchmarking and optimization capabilities. Built upon an innovative architecture, it integrates high-performance analysis with a user-centric design, ensuring top-notch video quality evaluation across various platforms. Specifically designed for mobile phone testing, the VMOS Assessment Tool integrates seamlessly from the client side, making it ideal for efficient evaluation of mobile video performance.

Features:

Real-Time Analysis at Unprecedented Speed: Experience instantaneous, precise assessments with our tool’s advanced algorithms, ensuring rapid feedback and swift resolution of performance issues.

Enhanced QoE with ITU-T P.1204.3 Compliance: Aligned with the latest ITU-T P.1204.3 standards, the VMOS Assessment Tool offers refined evaluations that adhere to the most current benchmarks for perceptual video quality.

High-Quality Database Integration: Support for up to 8K resolution and 60 frames per second ensures comprehensive analysis of high-definition video content, enabling optimal performance and clarity.

Network QoS Optimization: Improve video playback with our tool’s focus on optimizing start-delay and buffering frequency, leading to smoother viewing experiences.

Integrated QoE and QoS Evaluation: The VMOS Assessment Tool seamlessly combines QoE and QoS metrics, providing a holistic analysis that ensures both user experience and network performance are optimized for superior video quality.

Flexible Device Compatibility and Viewing Distance: The VMOS Assessment Tool is designed to adapt to different streaming device dimensions, including PC, laptop, and mobile phone, and various viewing distances, ensuring optimal video quality regardless of the device or viewing conditions.

Seamless Platform Integration: Designed for effortless compatibility, the VMOS Assessment Tool integrates smoothly with existing video platforms, ensuring a hassle-free transition and minimal operational disruption.

Zero Client-Side Integration Required: The VMOS Assessment Tool manages the entire process, from video playback and network statistics recording to the final MOS score assessment, eliminating the need for any client-side integration.

Architecture Overview:

The INOS VMOS Assessment Tool encompasses multiple stages. Initially, it interacts with the video platform to obtain various encoded files, which are transmitted to the user network based on bandwidth availability. Subsequently, in the packet capturing phase, network packets are recorded into a PCAP file, along with the corresponding SSL decryption log key. During the packets processing phase, network packets are filtered to isolate only those related to video playback and player events. The final stage involves predicting the VMOS score by integrating video playback quality fluctuations, which reflect user QoS, with player events, which indicate network QoS.

INOS Facebook VQA Output Sample:

These output samples are derived from our Facebook quality testing on a mobile network operator in the United Kingdom. The results display a range of evaluation metrics utilized for the final VMOS assessment. Each performance metric is accompanied by geospatial testing locations on the map, time-domain values, and histogram values. The performance metrics will be discussed in the following points:

  1. Facebook Streaming Success:

This metric measures the success rate of logging into Facebook and streaming the video.

  • Facebook Streaming Start Delay:

This metric measures the time interval between the initiation of video loading and the commencement of video playback.

  • Facebook Streaming Buffer VMOS: 

This metric assesses the Network QoS VMOS, estimated from platform player events such as start delay, rebuffering event frequency, and rebuffering event duration relative to the original video duration.

  • Facebook Streaming Resolution per Second: 

This metric indicates the video playback resolutions per second, highlighting that Facebook frequently reduces the resolution to 540 pixels for mobile users.

This metric reflects the quality VMOS of video playback per second as a result of video quality fluctuations.

  • Facebook Streaming Quality VMOS:

This metric assesses the User QoE VMOS, indicating the Quality VMOS for the entire playback sequence, calculated from the Quality VMOS per second.

  • Facebook Streaming Final VMOS:

This metric represents the final VMOS score by merging both Network QoS and User QoE into a single score that encapsulates the overall experience.

INOS Tool Summary:

  • The INOS VMOS Assessment Tool is a Comprehensive Video Quality Evaluation tool for adaptive video streaming on Facebook, ensuring optimized user experience and network performance.
  • The Tool Features Innovative System Architecture by processing stages from obtaining encoded files, capturing and filtering network packets, to predicting the VMOS score.
  • The Tool Offers Advanced Real-Time Analysis with instantaneous, precise assessments and support for high-definition video content up to 8K resolution and 60 frames per second.
  • The Tool Provides Seamless Client-Side Integration for Mobile Testing, requiring no client-side integration and adapting to various device dimensions and viewing distances for efficient evaluation of mobile video performance.
  • The Tool Produces Detailed Output Samples for Comprehensive Evaluation.
  • The Tool Ensures Compatibility with Other Video Platforms, including YouTube, Shahid, TikTok, and Instagram.

We would like to extend our sincere thanks to Obeidallah Ali, our R&D Director at Digis Squared, for his invaluable contribution to this white paper. His expertise and insights have been instrumental in shaping this content and ensuring its relevance!

Is the Customer Always Right?

Understanding the Dynamics Between System Integrators, Vendors, and Customers

The age-old adage, “The customer is always right,” has been a guiding principle in the world of business for decades. However, when it comes to the complex realm of system integration and vendor interactions, this notion may not always hold true. In this article, we delve into the delicate balance of power and decision-making between system integrators, vendors, and customers, and explore when it may be necessary to say no to a customer’s requests.

The Customer’s Perspective

Customers play a vital role in the success of any business endeavor. Their needs, requirements, and feedback shape the products and services offered by vendors and system integrators. Customers often come with specific expectations and demands, driven by their unique goals and priorities. The customer-centric approach emphasizes the importance of listening to the customer, understanding their requirements, and delivering solutions that meet or exceed their expectations.

The Role of System Integrators and Vendors

System integrators and vendors serve as the bridge between customers and technology solutions. They possess specialized knowledge, expertise, and resources to design, implement, and support complex systems and solutions. While their primary goal is to satisfy customer needs, system integrators and vendors also have a responsibility to deliver high-quality, reliable products and services that align with industry standards and best practices.

Saying No: When Should System Integrators and Vendors Push Back?

Despite the emphasis on customer satisfaction, there are instances where it may be necessary for system integrators and vendors to say no to a customer’s requests. Some common scenarios include:

  • 1. Technical Feasibility: If a customer requests a solution that is technically infeasible or goes against industry standards, system integrators and vendors may need to push back and propose alternative approaches.
  • 2. Scope Creep: Customers may often expand the scope of a project without considering the potential impact on timelines, resources, and budgets. In such cases, system integrators and vendors may need to set clear boundaries and manage customer expectations.
  • 3. Security and Compliance: In today’s digital landscape, cybersecurity and data privacy are top priorities. If a customer’s request poses security risks or non-compliance with regulations, system integrators, and vendors must prioritize safeguarding sensitive information.
  • 4. Resource Constraints: Customers may demand quick turnaround times or customized solutions that strain resources and impact the quality of deliverables. System integrators and vendors may need to communicate effectively with customers to manage expectations and maintain service standards.

Resolving the Dilemma: Strategies for Effective Communication and Collaboration

To navigate the challenges of balancing customer demands with technical limitations and industry standards, system integrators and vendors can adopt the following strategies:

  • 1. Open Communication: Establishing clear channels of communication with customers is crucial. System integrators and vendors should actively listen to customer requirements, provide transparent feedback, and collaborate on finding mutually beneficial solutions.
  • 2. Educating Customers: System integrators and vendors can educate customers on best practices, emerging technologies, and industry trends. By sharing expertise and insights, customers can make informed decisions that align with their long-term goals.
  • 3. Setting Expectations: From the inception of a project, setting clear expectations regarding timelines, deliverables, and potential challenges is essential. System integrators and vendors should communicate proactively to avoid misunderstandings and scope creep.
  • 4. Collaborative Problem-Solving: When faced with conflicting priorities or technical constraints, system integrators, vendors, and customers can engage in collaborative problem-solving. By brainstorming alternatives and exploring different approaches, a consensus can be reached that satisfies all stakeholders.

In Conclusion

While the customer’s needs and preferences are paramount in the world of system integration and vendor relationships, there are situations where saying no is necessary to uphold standards, ensure security, and deliver value. By fostering open communication, educating customers, setting clear expectations, and engaging in collaborative problem-solving, system integrators and vendors can navigate this delicate balance effectively. Ultimately, the key lies in fostering a relationship built on trust, respect, and a shared commitment to success.

The Role of Cloud Hyperscalers in the Telecom Industry: Balancing Opportunities and Challenges

Cloud hyperscalers, such as Amazon Web Services (AWS), Microsoft Azure, and Google Cloud Platform (GCP), have revolutionized various industries, including telecommunications. Their entry into the telecom sector has introduced a wave of innovation, efficiency, and scalability, but it has also brought challenges. This article explores the positive and negative impacts of cloud hyperscalers on the telecom industry.

Positive Impacts

1. Enhanced Scalability and Flexibility

Cloud hyperscalers offer telecom companies unparalleled scalability and flexibility. Traditional telecom infrastructure often involves significant capital expenditure and time-consuming upgrades. Hyperscalers provide on-demand resources that can be scaled up or down based on traffic and user demand, allowing telecom operators to manage their resources more efficiently and cost-effectively.

2. Accelerated Innovation

Hyperscalers have accelerated innovation within the telecom industry. With access to advanced cloud services such as artificial intelligence (AI), machine learning (ML), and big data analytics, telecom operators can develop new services and applications rapidly. These technologies enable more efficient network management, improved customer experiences, and the creation of new revenue streams through innovative offerings like smart cities and IoT services.

3. Cost Efficiency

One of the most significant benefits is the reduction in operational costs. By leveraging the economies of scale provided by hyperscalers, telecom companies can reduce the cost of maintaining and upgrading their own data centers. This shift from CapEx to OpEx allows for more predictable budgeting and financial planning.

4. Enhanced Security and Compliance

Leading cloud hyperscalers invest heavily in security and compliance, often exceeding what individual telecom operators can achieve. This investment translates into robust security measures, regular updates, and compliance with global standards, thereby enhancing the overall security posture of telecom networks and protecting sensitive customer data.

5. Global Reach and Reliability

Hyperscalers offer a global infrastructure that ensures high availability and reliability. Telecom operators can leverage this global network to offer consistent and high-quality services to customers, irrespective of their geographical location. This capability is particularly beneficial for multinational telecom companies seeking to provide seamless cross-border services.

Negative Impacts

1. Dependency and Loss of Control

One of the major downsides is the dependency on third-party providers. Relying on hyperscalers means telecom operators may lose some control over their infrastructure and data. Any service disruption or policy change by the hyperscaler can directly impact the telecom company’s operations and customer service.

2. Increased Competition

Cloud hyperscalers have started to offer their own telecom services, such as communication platforms and networking solutions. This move has introduced a new level of competition for traditional telecom operators, who now have to compete not only with other telecom companies but also with these tech giants.

3. Regulatory and Compliance Challenges

Operating in highly regulated environments, telecom companies must ensure that their use of cloud services complies with local regulations. Data sovereignty and compliance can become complex when using global cloud providers, requiring careful navigation of regulatory landscapes to avoid legal pitfalls.

4. Job Displacement

The shift towards automation and cloud-based services can lead to job displacement within the telecom industry. As more processes become automated and managed through cloud services, the need for traditional telecom roles may decrease, potentially leading to workforce reductions and the need for reskilling.

5. Security Concerns

While hyperscalers invest heavily in security, the centralization of data and services in the cloud can present attractive targets for cyber-attacks. Any security breach at a hyperscaler can have widespread implications, affecting multiple telecom operators and their customers.

Conclusion

Cloud hyperscalers have undoubtedly transformed the telecom industry, offering significant benefits in terms of scalability, innovation, and cost efficiency. However, these advantages come with challenges, including dependency, increased competition, regulatory hurdles, job displacement, and security concerns. As the telecom industry continues to evolve, operators must strategically navigate these impacts, balancing the opportunities provided by hyperscalers with the need to maintain control, ensure compliance, and protect their workforce.