Revolutionizing Indoor Network Testing with INOS: A Deep Dive into the Enhanced Indoor Kit

Introduction

As mobile networks continue to evolve with 5G, ensuring optimal indoor connectivity is more critical than ever. INOS (Indoor Network Optimization Solution) is redefining how operators and engineers approach indoor testing with its advanced tools, robust features, and a newly upgraded Indoor Kit. Designed to tackle the unique challenges of indoor environments, the INOS Indoor Kit offers significant improvements in software, hardware, and overall functionality to deliver superior usability, reliability, and results.


The Importance of Indoor Testing

Indoor spaces like malls, airports, and office buildings pose unique challenges for network optimization due to:

  • Architectural complexity: Thick walls and multiple floors impede signal propagation.
  • User density: Crowded environments generate high network demand.
  • Interference: Co-channel interference can degrade signal quality.

These challenges make precise and efficient indoor network testing crucial for delivering seamless connectivity.


Enhancements in the INOS Indoor Kit

Software Improvements (Icons)

  1. Revamped User Interface (UI):
    The new UI offers an intuitive design for enhanced accessibility, streamlining control, and monitoring processes for users.
  2. Enhanced Connectivity Options:
    Supporting Internet, WLAN, and Bluetooth connections, the kit provides robust and flexible inter-device connectivity.
  3. Comprehensive Control Capabilities:
    The tablet serves as a central hub, allowing users to control every connected device and monitor KPIs directly.
  4. Centralized Alarm Notifications:
    Alarm notifications from all connected devices are displayed on the tablet in real-time, enabling prompt troubleshooting.

Hardware Upgrades

  1. Ergonomic and Lightweight Design:
    A portable, lighter design ensures ease of use in various indoor scenarios.
  2. Extended Battery Life:
    Powering up to 12 devices for 8 hours of continuous operation, the kit supports long-duration tasks without frequent recharging.
  3. Smart Cooling System:
    An intelligent cooling mechanism activates based on system temperature, ensuring consistent performance without overheating.

Key Features and Differentiators

The INOS Indoor Kit offers several standout features that set it apart from competitors:

  1. 5G Support Across All Devices:
    Fully optimized for 5G testing, supporting all devices within the kit to handle the latest network demands.
  2. Tablet as a Centralized Display:
    Displays real-time radio KPIs, with intuitive visualizations and insights for quick decision-making.
  3. Advanced Device Management via Tablet:
    • Control multiple phones directly.
    • Color-coded indicators highlight synced devices, poor KPIs, and ongoing logfile recordings, allowing users to focus on critical areas.
  4. Support for Large Layout Images:
    Unlike competitors, INOS excels at handling and displaying large indoor layouts, ensuring no testing area is overlooked.
  5. Automated Processes:
    • Logfile Uploading and Collection: Eliminates manual intervention, saving time and effort.
    • Post-Processing Automation: Simplifies report generation and routine tasks that traditionally require manual copy-paste workflows.
  6. Comprehensive Support Model:
    INOS provides end-to-end support for all product aspects, ensuring users have the help they need at every stage.
  7. Expandable Kit Design:
    Offers the flexibility to add more devices, making it adaptable to different indoor testing scales.
  8. Enhanced Connectivity:
    INOS leverages Internet, WLAN, and Bluetooth for device control, overcoming the limitations of competitors who rely solely on Bluetooth (limited to 8 devices and prone to connectivity issues).

Why INOS Stands Out in Indoor Testing

INOS combines cutting-edge technology with user-centric design to deliver a superior indoor testing experience. With its latest enhancements, it ensures that telecom operators and network engineers have the tools they need to achieve:

  •  Unmatched Accuracy: Collect and analyze data with precision.
  • Greater Efficiency: Streamlined workflows and automation save time and effort.
  • Enhanced Portability: Lightweight design and extended battery life make it perfect for demanding indoor environments.

Conclusion

The INOS Indoor Kit, with its latest software and hardware upgrades, is a game-changer for indoor network optimization. By focusing on usability, functionality, and reliability, it empowers operators to tackle even the most challenging scenarios with confidence.

Ready to elevate your indoor testing? Discover how the enhanced INOS Indoor Kit can revolutionize your network optimization strategy.

This blog post was written by Amr AshrafProduct Architect and Support Director at Digis Squared. With extensive experience in telecom solutions and AI-driven technologies, Amr plays a key role in developing and optimizing our innovative products to enhance network performance and operational efficiency.

Optimizing LTE 450MHz Networks with INOS 

Introduction 

The demand for reliable, high-coverage wireless communication is increasing, particularly for mission-critical applications, rural connectivity, and industrial deployments. LTE 450MHz (Band 31) is an excellent solution due to its superior propagation characteristics, providing extensive coverage with fewer base stations. However, the availability of compatible commercial handsets remains limited, creating challenges for operators and network engineers in testing and optimizing LTE 450MHz deployments. 

To overcome these challenges, DIGIS Squared is leveraging its advanced network testing tool, INOS, integrated with ruggedized testing devices such as the RugGear RG760. This article explores how INOS enables efficient testing, optimization, and deployment of LTE 450MHz networks without relying on traditional consumer handsets. 

The Challenge of LTE 450MHz Testing 

LTE 450MHz is an essential frequency band for sectors such as utilities, public safety, and IoT applications. The band’s key advantages include: 

  • Longer range: Due to its low frequency, LTE 450MHz signals propagate further, covering large geographical areas with minimal infrastructure. 
  • Better penetration: It ensures superior indoor and underground coverage, crucial for industrial sites and emergency services. 
  • Low network congestion: Given its niche application, LTE 450MHz networks often experience less congestion than conventional LTE bands. 

However, network operators and service providers face significant hurdles in testing and optimizing LTE 450MHz due to the lack of commercially available handsets supporting Band 31. Traditional methods of network optimization rely on consumer devices, which are not widely available for this band. 

Introducing INOS: A Comprehensive Drive Test Solution 

INOS is a state-of-the-art, vendor-agnostic network testing and optimization tool developed by DIGIS Squared. It allows operators to: 

  • Conduct extensive drive tests and walk tests with real-time data collection. 
  • Analyze Key Performance Indicators (KPIs) such as RSRP, RSRQ, SINR, throughput, and latency. 
  • Evaluate handover performance, coverage gaps, and network interference. 
  • Benchmark networks across multiple operators. 
  • Generate comprehensive reports with actionable insights for optimization. 

INOS eliminates the dependency on consumer devices, making it an ideal solution for LTE 450MHz testing. 

How INOS Enhances LTE 450MHz Testing 

1. Seamless Data Collection 

INOS allows seamless data collection for LTE 450MHz performance analysis. Engineers can conduct extensive tests using professional-grade testing devices like the RugGear RG760. 

2. Comprehensive Performance Monitoring 

INOS enables engineers to monitor key LTE 450MHz performance metrics, including: 

  • Signal strength and quality (RSRP, RSRQ, SINR). 
  • Throughput measurements for downlink and uplink speeds. 
  • Handover success rates and network transitions. 
  • Coverage mapping with real-time GPS tracking. 

3. Efficient Deployment & Troubleshooting 

Using INOS streamlines the LTE 450MHz deployment process by: 

  • Identifying weak coverage areas before commercial rollout. 
  • Troubleshooting network performance issues in real-time. 
  • Validating base station configurations and antenna alignments. 

4. Cost-Effective & Scalable Testing 

By using INOS instead of expensive proprietary testing hardware, operators can achieve a cost-effective and scalable testing framework. 

Real-World Applications 

1. Private LTE Networks 

Organizations deploying private LTE networks in critical industries (e.g., mining, utilities, emergency services) can use INOS to ensure optimal network performance and coverage. 

2. Smart Grids & Utilities 

With LTE 450MHz playing a key role in smart grids and utilities, INOS facilitates efficient network optimization, ensuring stable communication between smart meters and control centers. 

3. Public Safety & Emergency Response 

For first responders relying on LTE 450MHz for mission-critical communications, INOS ensures that networks meet the required service quality and reliability standards. 

4. Rural & Remote Connectivity 

Operators extending connectivity to underserved areas can leverage INOS to validate coverage, optimize handovers, and enhance user experience. 

Conclusion 

Testing and optimizing LTE 450MHz networks have historically been challenging due to the limited availability of compatible handsets. By leveraging the powerful capabilities of INOS, DIGIS Squared provides a cutting-edge solution for network operators to efficiently deploy and maintain LTE 450MHz networks. 

With INOS, operators can conduct extensive drive tests, analyze network KPIs, and troubleshoot issues in real-time, ensuring seamless connectivity for industries relying on LTE 450MHz. As the demand for private LTE networks grows, INOS represents a game-changer in network testing and optimization. 

For more information on how INOS can enhance your LTE 450MHz deployment, contact DIGIS Squared today! 

————————————————————————————————————————————-

This blog post was written by Amr AshrafProduct Architect and Support Director at Digis Squared. With extensive experience in telecom solutions and AI-driven technologies, Amr plays a key role in developing and optimizing our innovative products to enhance network performance and operational efficiency.

AI and Machine Learning Integration in 6G: DIGIS Squared’s Role in Shaping the Future

As the journey from 5G to 6G unfolds, the integration of Artificial Intelligence (AI) and Machine Learning (ML) is not just a feature—it’s a game-changer for wireless networks. With 6G poised to redefine connectivity, DIGIS Squared is at the forefront, driving innovation to unlock the potential of AI-powered networks.

The Critical Role of AI in 6G

6G networks aim to deliver not just faster speeds but smarter and more adaptive communication. AI is the key enabler for these advancements, addressing the complexity of next-generation networks by providing:

  • Autonomous Optimization: AI enables networks to self-learn and adapt in real-time, ensuring optimal performance even under rapidly changing conditions.
  • Dynamic Spectrum Management: Efficient use of spectrum resources is critical in 6G. AI-driven algorithms analyze and allocate frequencies dynamically, maximizing capacity and minimizing interference.
  • User-Centric Experiences: Personalization will reach new heights as AI tailors network resources to individual user needs, supporting applications like AR, VR, and holographic communication.

DIGIS Squared’s Role

DIGIS Squared is leveraging its expertise in AI and telecommunications to pioneer innovative solutions for 6G networks. By integrating domain-specific AI models with advanced network infrastructure, DIGIS Squared is working on:

  • AI-Driven Network Automation: Developing tools to automate configuration, monitoring, and troubleshooting for future networks.
  • Predictive Analytics: Enhancing network reliability by predicting and addressing potential issues before they impact users.
  • Enhanced IoT Connectivity: Creating intelligent frameworks to manage the explosive growth of IoT devices seamlessly.

This commitment ensures DIGIS Squared remains a leader in the global 6G ecosystem.

New Horizons for AI-Integrated Networks

With AI at its core, 6G is set to unlock transformative use cases:

  • Holographic Telepresence: Imagine lifelike, three-dimensional communication that feels as real as being there in person.
  • Self-Healing Networks: AI will enable networks to diagnose and resolve issues autonomously, ensuring uninterrupted connectivity.
  • Sustainable Connectivity: Energy-efficient AI models will align with 6G’s goal of reducing environmental impact while delivering superior performance.

Challenges to Overcome

While the opportunities are vast, challenges remain. These include ensuring data privacy, developing energy-efficient AI models, and achieving global standardization. DIGIS Squared is addressing these challenges by collaborating with industry partners, contributing to standardization efforts, and innovating in sustainable AI-driven technologies.

The Future Awaits

The integration of AI in 6G is more than a technical evolution; it’s a revolution that will transform industries and everyday life. DIGIS Squared is proud to play a pivotal role in this transformation, shaping a smarter, more connected future for all.

————————————————————————————————————————————-

This blog post was written by Amr Ashraf, Product Architect and Support Director at Digis Squared. With extensive experience in telecom solutions and AI-driven technologies, Amr plays a key role in developing and optimizing our innovative products to enhance network performance and operational efficiency.

Intelligent Reflecting Surfaces (IRS)

Paving the Way for 6G Connectivity. As we are only a few years away from the 6G era, one of the transformative technologies shaping the future of wireless communication is Intelligent Reflecting Surfaces (IRS). But what exactly is IRS, and why is it so critical for 6G? Let us dive in.
 
What is IRS?
An Intelligent Reflecting Surface is a planar structure composed of programmable, passive elements (often metasurfaces) that can reflect and manipulate electromagnetic waves. Unlike traditional antennas, IRS is not active device and doesn’t emit or amplify signals. Instead, it reconfigures the wireless environment by dynamically adjusting the phase, amplitude, and polarisation of reflected signals creating an optimized communication pathway between the transmitter(gNB) and receiver
(Handset).
In Real-World Context: Imagine IRS as a “smart mirror” for wireless signals, capable of bending and redirecting communication waves with unprecedented precision.
 
IRS Architecture
IRS typically consists of three key components:
Metasurface: Comprising numerous sub-wavelength elements, each capable of independently tuning the reflected signal.
Controller: A central unit that dynamically configures the metasurface based on real-time channel conditions.
Communication Link: A connection to the base station or network orchestrating the IRS behaviour in response to the environment.
 
Key Advantages Of IRS in 6G:

1- Enhanced Signal Coverage: By intelligently reflecting signals, IRS helps overcome obstacles and dead zones in challenging environments.
2- Noise Mitigation: the reflectors work on noise suppression beside their work on signal amplification
3- Beamforming simplification: with IRS beamforming became much easier than before
4- Throughput improvement: as a direct result of coverage improvement, noise mitigation amd beamforming efficiency improvements the user data rates are significantly better than before.
5- Energy Efficiency: IRS is a passive system, significantly reducing power consumption compared to active communication devices.
6- Improved Spectral Efficiency: By dynamically steering signals, IRS enhances the overall system capacity.
7- Sustainability: Its low power usage aligns with the green communication goals of 6G.
8- CAPEX reduction : boosting the single site coverage will lead to less number of needed sites and consequently this will reduce the overall CAPEX of 6G deployment.

Now let’s see where we can deploy the IRS,
Infrastructure Deployment Locations:
– Buildings and Structures
– High-rise office complexes
– Shopping malls
– Hospitals and healthcare facilities
– Industrial campuses
– Data centers
– Smart city infrastructure

Aerial and Mobile Platforms
– Unmanned Aerial Vehicles (UAVs)
– Autonomous vehicles
– Public transportation systems
– Maritime vessels
– Satellite communication links

Urban and Environmental Contexts
– Streetlamp posts
– Traffic signal infrastructure
– Building facades
– Public transportation hubs
– Underground transit systems
– Bridges and overpasses

Specialized Deployment Zones
– Remote research stations
– Military and defense installations
– Emergency communication networks
– Disaster response infrastructure
– Agricultural monitoring systems
– Renewable energy monitoring sites
 
It is obviously clear that IRS deployment options are diversified and versatile now let’s discuss more the deployment considerations, here you are some Key Factors for IRS Placement:
1- Signal propagation characteristics
2- Environmental obstacles
3- Population density
4-Existing communication infrastructure
5-Cost-effectiveness of implementation
6- Long-term maintenance requirements

Use Cases of IRS
•Urban Connectivity, overcome obstacles in dense urban areas where signal blockage is common.
•Indoor Networks, Boost signal strength in offices, malls, and homes by managing reflections.
•IoT Application, Provide reliable connectivity to low-power IoT devices in complex environments.
•Smart Cities, Enable seamless connectivity for autonomous vehicles, drones, and smart infrastructure.
•Ubiquitous NTN coverage, extension of satellite D2C / D2D coverage and enhance the coverage provided by HAPs
•Terahertz Enablement, by boosting the coverage of extremely high frequency range signals IRS consider as a real enabler for terahertz connectivity.

While promising, IRS technologies are not without challenges:
1- Complex channel modeling requires advanced computational techniques

2- Initial deployment costs can be significant
3- Potential interference issues in dense multi-user environments
4- Ongoing research needed to optimize performance across varied scenarios
5- Mobility managment will be one of the big challenges of IRS deployment
6- Meticulous design and where exactly to deploy the IRS avoiding EHS issues
 
As we embrace 6G, IRS offers an exciting opportunity to reimagine wireless networks. By transforming passive environments into active contributors to communication, IRS isn’t just an enhancement—it’s a revolution.

A 2023 study by Nokia Bell Labs demonstrated IRS can improve network coverage by up to 40% in urban environments, showcasing its transformative potential.

RIS (reconfigurable intelligent surfaces) is an advanced modern form of IRS where in RIS we have the capability to dynamically change the phase and current of the propagated wave in sub-millisecond period

MIT Media Lab Research (2023) developed dynamic metasurface with sub-millisecond reconfiguration, created IRS capable of adapting to changing wireless environments in real-time, reduced energy consumption by up to 60% compared to traditional signal amplification methods.

Prepared By: Abdelrahman Fady | CTO | Digis Squared

Why Service Providers Should Go Vendor-Agnostic?

Being a vendor-agnostic managed services provider (MSP) offers several strategic advantages, particularly in today’s diverse and rapidly changing technology landscape. Here are some key benefits:

1. Flexibility and Customization for Clients

  • Tailored Solutions: Vendor-agnostic MSPs aren’t bound to specific hardware or software brands, allowing them to provide tailored solutions that best meet each client’s unique needs.
  • Seamless Integration: This approach allows MSPs to integrate diverse technologies, which is especially beneficial for clients with existing systems from various vendors. It ensures compatibility across different platforms and systems.

2. Improved Trust and Objectivity

  • Unbiased Recommendations: Without vendor affiliations, MSPs can provide impartial advice focused solely on the client’s business goals rather than pushing products from specific vendors.
  • Enhanced Credibility: Clients often see vendor-agnostic MSPs as more credible partners, as they know recommendations are based purely on quality and suitability, not vendor relationships.

3. Access to Best-of-Breed Technology

  • Greater Variety of Options: Vendor-agnostic MSPs have access to a broad spectrum of technologies, enabling them to choose the best-in-class products for any given solution.
  • Rapid Adaptation to Industry Trends: They can quickly adopt new and emerging technologies, providing clients with up-to-date solutions without being locked into a single vendor’s product lifecycle.

4. Reduced Vendor Lock-In Risks

  • Enhanced Flexibility for Clients: By working with a vendor-agnostic MSP, clients avoid becoming dependent on a single vendor, which reduces risks associated with vendor-specific limitations, such as pricing changes or service discontinuation.
  • Easier Transition and Upgrades: Clients can transition to new technology or upgrade their systems without having to overhaul their entire infrastructure, preserving both continuity and cost efficiency.

5. Broader Industry Knowledge and Expertise

  • Cross-Vendor Knowledge: A vendor-agnostic MSP is typically skilled in managing and troubleshooting a wide range of technologies, offering clients a broader knowledge base and deeper expertise.
  • Continuous Skill Development: MSPs that work with multiple vendors stay current across different technologies, tools, and standards, ensuring that they bring industry-wide best practices to each engagement.

6. Enhanced Scalability and Future-Proofing

  • Adaptable Scaling Options: Vendor-agnostic MSPs can scale services up or down, choosing the most effective tools and vendors for each stage of growth, enabling clients to expand or streamline without limits.
  • Future-Proof Solutions: Without a commitment to specific vendors, MSPs can more readily integrate cutting-edge technologies as they emerge, helping clients future-proof their operations and remain competitive.

7. Cost Savings for Clients

  • Optimized Pricing Structures: Vendor-agnostic MSPs can select the most cost-effective solutions for each situation, maximizing value without unnecessary expenses tied to specific vendor pricing models.
  • Elimination of Unnecessary Licensing Fees: By evaluating multiple vendor options, they can choose solutions that reduce or eliminate redundant licensing costs, allowing clients to optimize their budgets.

8. Enhanced Service Continuity and Reliability

  • Improved Vendor Alternatives: In case of vendor issues or service interruptions, vendor-agnostic MSPs can provide alternative solutions more easily, maintaining continuity without significant disruption.
  • Better Risk Mitigation: By using multiple vendor solutions, MSPs can create redundancies and implement failover options, reducing the impact of any single vendor failure.

Summary

A vendor-agnostic MSP can offer unbiased, flexible, and future-proof solutions, giving clients greater control over their technology stack while maximizing cost-efficiency and operational resilience. This approach builds trust, meets diverse client needs, and provides a competitive edge by adapting to market changes and emerging technology with agility.

Author: Ahmed Zein, Digis Squared’s COO, and expert in Managed Services excellence and Operations.

INOS VMOS Assessment Tool: Redefining Video Quality Assessment for OTT Video

The INOS Video Mean Opinion Score (VMOS) Assessment Tool represents a groundbreaking advancement in evaluating both User Quality-of-Experience (QoE) and Network Quality of Service (QoS) for adaptive video streaming on Facebook. By seamlessly merging these critical aspects, the tool delivers unparalleled benchmarking and optimization capabilities. Built upon an innovative architecture, it integrates high-performance analysis with a user-centric design, ensuring top-notch video quality evaluation across various platforms. Specifically designed for mobile phone testing, the VMOS Assessment Tool integrates seamlessly from the client side, making it ideal for efficient evaluation of mobile video performance.

Features:

Real-Time Analysis at Unprecedented Speed: Experience instantaneous, precise assessments with our tool’s advanced algorithms, ensuring rapid feedback and swift resolution of performance issues.

Enhanced QoE with ITU-T P.1204.3 Compliance: Aligned with the latest ITU-T P.1204.3 standards, the VMOS Assessment Tool offers refined evaluations that adhere to the most current benchmarks for perceptual video quality.

High-Quality Database Integration: Support for up to 8K resolution and 60 frames per second ensures comprehensive analysis of high-definition video content, enabling optimal performance and clarity.

Network QoS Optimization: Improve video playback with our tool’s focus on optimizing start-delay and buffering frequency, leading to smoother viewing experiences.

Integrated QoE and QoS Evaluation: The VMOS Assessment Tool seamlessly combines QoE and QoS metrics, providing a holistic analysis that ensures both user experience and network performance are optimized for superior video quality.

Flexible Device Compatibility and Viewing Distance: The VMOS Assessment Tool is designed to adapt to different streaming device dimensions, including PC, laptop, and mobile phone, and various viewing distances, ensuring optimal video quality regardless of the device or viewing conditions.

Seamless Platform Integration: Designed for effortless compatibility, the VMOS Assessment Tool integrates smoothly with existing video platforms, ensuring a hassle-free transition and minimal operational disruption.

Zero Client-Side Integration Required: The VMOS Assessment Tool manages the entire process, from video playback and network statistics recording to the final MOS score assessment, eliminating the need for any client-side integration.

Architecture Overview:

The INOS VMOS Assessment Tool encompasses multiple stages. Initially, it interacts with the video platform to obtain various encoded files, which are transmitted to the user network based on bandwidth availability. Subsequently, in the packet capturing phase, network packets are recorded into a PCAP file, along with the corresponding SSL decryption log key. During the packets processing phase, network packets are filtered to isolate only those related to video playback and player events. The final stage involves predicting the VMOS score by integrating video playback quality fluctuations, which reflect user QoS, with player events, which indicate network QoS.

INOS Facebook VQA Output Sample:

These output samples are derived from our Facebook quality testing on a mobile network operator in the United Kingdom. The results display a range of evaluation metrics utilized for the final VMOS assessment. Each performance metric is accompanied by geospatial testing locations on the map, time-domain values, and histogram values. The performance metrics will be discussed in the following points:

  1. Facebook Streaming Success:

This metric measures the success rate of logging into Facebook and streaming the video.

  • Facebook Streaming Start Delay:

This metric measures the time interval between the initiation of video loading and the commencement of video playback.

  • Facebook Streaming Buffer VMOS: 

This metric assesses the Network QoS VMOS, estimated from platform player events such as start delay, rebuffering event frequency, and rebuffering event duration relative to the original video duration.

  • Facebook Streaming Resolution per Second: 

This metric indicates the video playback resolutions per second, highlighting that Facebook frequently reduces the resolution to 540 pixels for mobile users.

This metric reflects the quality VMOS of video playback per second as a result of video quality fluctuations.

  • Facebook Streaming Quality VMOS:

This metric assesses the User QoE VMOS, indicating the Quality VMOS for the entire playback sequence, calculated from the Quality VMOS per second.

  • Facebook Streaming Final VMOS:

This metric represents the final VMOS score by merging both Network QoS and User QoE into a single score that encapsulates the overall experience.

INOS Tool Summary:

  • The INOS VMOS Assessment Tool is a Comprehensive Video Quality Evaluation tool for adaptive video streaming on Facebook, ensuring optimized user experience and network performance.
  • The Tool Features Innovative System Architecture by processing stages from obtaining encoded files, capturing and filtering network packets, to predicting the VMOS score.
  • The Tool Offers Advanced Real-Time Analysis with instantaneous, precise assessments and support for high-definition video content up to 8K resolution and 60 frames per second.
  • The Tool Provides Seamless Client-Side Integration for Mobile Testing, requiring no client-side integration and adapting to various device dimensions and viewing distances for efficient evaluation of mobile video performance.
  • The Tool Produces Detailed Output Samples for Comprehensive Evaluation.
  • The Tool Ensures Compatibility with Other Video Platforms, including YouTube, Shahid, TikTok, and Instagram.

We would like to extend our sincere thanks to Obeidallah Ali, our R&D Director at Digis Squared, for his invaluable contribution to this white paper. His expertise and insights have been instrumental in shaping this content and ensuring its relevance!

Staff Augmentation for Effective Project Delivery & Operations

Staff augmentation has become a popular strategy for delivering projects effectively while positively impacting project financials. This approach offers businesses the flexibility to scale their workforce up or down based on project needs, bring in specialized skills for short-term requirements, and optimize costs. 

Using Staff Augmentation for Effective Project Delivery & Operations 

1. Flexibility in Scaling:

Staff augmentation allows companies to quickly scale their team size according to project requirements. This flexibility ensures that projects can be handled efficiently without the need to hire full-time employees for short-term needs.

2. Access to Specialized Skills:

By leveraging staff augmentation services, organizations can access specialized skills and expertise that may not be available in-house. This is especially beneficial for projects that require niche capabilities or temporary support in specific areas.

3. Cost-Effectiveness:

One of the key benefits of staff augmentation is its cost-effectiveness. Rather than bearing the overhead costs associated with full-time employees, businesses can utilize external resources on a project-basis, reducing overall expenses.

4. Faster Project Delivery:

With the ability to quickly onboard additional resources through staff augmentation, projects can be completed faster and more efficiently. This accelerated turnaround time can lead to increased client satisfaction and competitive advantage.

Positive Impact on Project Financials

1. Reduced Overhead Costs:

Staff augmentation allows companies to avoid the costs associated with hiring and retaining full-time employees, such as salaries, benefits, training, and infrastructure. This cost-saving element directly impacts project financials positively.

2. Improved Budget Control:

By only paying for the resources utilized during the project duration, organizations can better control their project budgets. This results in more accurate cost estimation and allocation, reducing the risk of budget overruns.

3. Enhanced ROI:

With staff augmentation, businesses can allocate resources where they are most needed, optimizing project efficiency and ROI. The ability to access specialized skills and scale teams as required contributes to a higher return on investment for projects.

4. Mitigation of Employee-related Risks:

Engaging external resources through staff augmentation helps mitigate risks associated with full-time employees, such as turnover, training costs, and legal responsibilities. This risk mitigation positively impacts project financial stability.

The Future of Staff Augmentation Business

1. Continued Growth:

As businesses seek flexible workforce solutions and specialized expertise, the demand for staff augmentation services is expected to grow. This trend is fueled by the need for agility, cost-efficiency, and access to diverse talent pools.

2. Emphasis on Technology Integration:

The future of staff augmentation will involve a greater emphasis on technology integration, automation, and AI-driven solutions. This shift aims to enhance service quality, streamline processes, and deliver better value to clients.

3. Global Talent Pool Access:

Staff augmentation providers will increasingly tap into global talent pools, offering organizations access to a broader range of skills and capabilities. This globalized approach enables businesses to leverage diverse expertise regardless of geographic limitations.

4. Focus on Compliance and Security:

With data privacy regulations and cybersecurity concerns on the rise, the future of staff augmentation will prioritize compliance and security measures. Providers will invest in robust safeguards to protect client data and ensure regulatory adherence.

In conclusion, staff augmentation is a strategic approach that enables organizations to deliver projects effectively, optimize project financials, and adapt to evolving business demands. As the workforce landscape evolves, the future of staff augmentation businesses will be shaped by technology integration, global talent sourcing, and a steadfast commitment to compliance and security.

INOS New Feature!

We’re thrilled to unveil a game-changing addition to our Drive Testing Product INOS: Video Quality Assessment powered by AI!

 Real-time Video Assessment: Our cutting-edge AI model enables real-time assessment of streamed videos & played back videos  providing invaluable insights into video quality and performance.

 Precision and Accuracy: Say goodbye to traditional video assessments! Our AI-driven approach ensures unparalleled precision and accuracy in evaluating video quality, empowering you to make data-driven decisions.

Key Benefits:
        •       Enhanced Visibility: Gain deeper insights into video streaming quality across your network.
        •       Proactive Optimization: Identify and address potential issues before they impact user experience.
        •       Support for HD and 4K Videos: Assess the quality of all HD and 4K videos, ensuring an optimal viewing experience for all users.
        •       Improved Customer Satisfaction: standing on the real quality of videos over your network will help MNOs to deliver seamless video streaming experiences to delight your customers.

 How It Works:
        •       Our AI model continuously monitors and analyzes streamed videos, assessing various quality metrics in real-time.
        •       Actionable insights are provided instantly, enabling prompt optimization and troubleshooting.

Ready to elevate your video streaming performance? Reach out to our team today for a personalised demo and discover how INOS Video Quality Assessment can revolutionize your network management strategy!

Pioneering Managed Services in Open RAN Networks

In the ever-evolving landscape of telecommunications, Digis Squared stands as a trailblazer in delivering large-scale managed service projects across multiple Network Operator domains. With an extensive portfolio covering Field, RAN, Transport, IPBB, Core, VAS, and BSS domains, the company boasts profound experience and a robust foundation in managing Mobile Network Operator (MNO) networks. Leveraging multi-vendor expertise and diverse technological proficiency, Digis Squared ensures optimal operations for its Open RAN networks.

The emergence of Open RAN technologies has introduced a paradigm shift in network operations, presenting complexities attributed to an increased number of vendors, multiple integration points and interfaces as well as third parties solutions that are seamlessly integrated with MNOs network. In response, Digis Squared has ingeniously crafted its proprietary Managed Service Operations model. This model, aligned with the ITIL operational framework, the ITU FCAPS model, and SMO Standard guidelines provided by the ORAN Alliance, serves as a guiding structure for the company’s operational strategies across all Open RAN knowledge domains.

Within this model, Digis Squared meticulously covers a wide array of activities integral to Open RAN network management:

  • Radio Planning and Optimization activities including various types of RIC Operations  
  • Field Activities
    • Field maintenance
      • Corrective Maintenance
      • Preventive Maintenance
  • E2ETesting Activities
    • Drive Testing
    • Network function testing
  • Network Operations Center (NOC) activities
    • Front Office Operations
    • Performance Monitoring
    • Service Desk Operations
      • Helpdesk
      • Change Management
      • Incident Management
      • Problem Management
      • Risk Management
      • Reporting
    • Back Office Operations
    • Integration activities that include third parties’ management and Operations.
  • Customer Experience Governance activities.
Figure 1: Digis Squared ORAN MS Model

The encompassing nature of Digis Squared’s model extends its coverage across various essential components:

  • Radio
  • Site Hardware
  • RAN Software
  • Transport
  • Cloud Infrastructure
  • CaaS and O-cloud

The company’s expertise spans a broad spectrum of vendors, encompassing but not limited to VMWare, RedHat, Robin io, NEC, Mavenit, Altio-Star, Juniper, Dell, and HP. This expansive vendor landscape ensures a comprehensive understanding of diverse technological infrastructures, enabling Digis Squared to offer unparalleled solutions and support within the Open RAN ecosystem.

Digis Squared’s commitment to excellence and innovation in managed services within Open RAN networks continues to redefine industry standards. By blending extensive experience, a robust operational model, and a diverse vendor portfolio, the company stands at the forefront of delivering top-tier services in the realm of telecommunications.

As the telecommunications industry continues to evolve, Digis Squared remains dedicated to pioneering advancements, ensuring seamless operations and exceptional service delivery in the dynamic landscape of Open RAN networks.

CEM Framework: SOC Transformation

Embarking on the journey of SOC (Service Operations Center) transformation prompts a pivotal inquiry: does a Call Drop Rate of 0.5% represent a good or bad metric? Applying Schrodinger’s cat theory to this value unravels the multiplicity of its implications. From a network perspective, this rate may signify a positive standing. However, in the context of impacting strategic corporate accounts situated within buildings, it could potentially evoke frustration among CEOs and senior staff, thereby rendering the 0.5% rate unfavorable. This duality underscores the necessity for a broader vision that extends beyond network quality alone, focusing on service quality—a vision materialized through the SOC.

Understanding the SOC and its functionalities requires delving into the customer experience approach, especially as the telecom industry converges with rapidly advancing technology and heightened customer expectations. The advent of the Customer Experience Management (CEM) framework amplifies the significance of a dedicated customer experience team.

The primary goal of the CEM framework lies in augmenting customer satisfaction and fostering loyalty through the provision of effective technical support. This proactive approach not only contributes to sustained revenue growth but also serves as a linchpin for maintaining competitive differentiation in a dynamic market environment.

The SOC serves as the linchpin between network metrics and customer-centric service qualities. Its transformation represents a strategic shift towards a holistic perspective, acknowledging that network performance metrics, while vital, might not encapsulate the entirety of customer satisfaction. Integrating the SOC within the operational framework enables a more comprehensive

By amalgamating network-centric data with a nuanced understanding of customer needs, the SOC transformation aims to strike a delicate balance. It doesn’t dismiss the importance of network performance but rather complements it by incorporating the customer’s perception of service quality into the evaluation metrics.

In essence, the evolution of the SOC signifies a paradigm shift—a departure from a myopic focus on network metrics to a more encompassing approach that places customer experience at its core. Embracing this transformation not only elevates service delivery but also aligns telecommunications companies with the evolving landscape of customer-centricity, fostering enduring relationships and sustained growth in a fiercely competitive market.

Figure 1: CEM Model

The fundamental ethos of the SOC revolves around fostering a Customer-Centric network and operations, aligning every operational facet towards optimizing customer satisfaction.

Outlined below are the core functions that delineate the landscape of the SOC:

  1. Service Surveillance:

This function entails the continuous monitoring and management of service performance and quality. From fault detection to real-time response mechanisms, its aim is to minimize service disruptions while upholding stringent quality standards and Service Level Agreements (SLAs). Collaboration with network operations and customer support teams is crucial to gauge customer impact accurately. Robust reporting and documentation further drive ongoing improvements, ensuring high service reliability and customer satisfaction.

  • Service Analysis:

Delving deeper into customer usage patterns, service reliability, and network efficiency, this function identifies areas for enhancement or expansion. By assessing customer satisfaction levels, it informs future service development and enhancement strategies, paving the way for proactive service improvements.

  • Supporting CSI Initiatives:

The SOC actively participates in developing and executing action plans aimed at addressing identified gaps. Monitoring the impact of these changes is pivotal, as it supports continual service evolution, ensuring sustained high levels of customer satisfaction.

  • Reporting:

Systematic collection, analysis, and presentation of data and insights form the backbone of this function. Accurate and regular reports are indispensable for monitoring progress, identifying improvement areas, and supporting organizational success on a holistic level.

SOC teams have the below interaction map could be described as below.

Figure 2 : SOC interactions


As an integral component of the SOC transformation, Mobile Network Operators (MNOs) must integrate additional tools to facilitate and fortify this evolution. Some of these crucial tools encompass:

  1. Network Probing tools
  1. OSS data Access
  2. Trouble ticketing Tools.

The collaborative efforts between SOC (Service Operations Center) and CEM (Customer Experience Management) teams play a pivotal role in crafting Service Key Performance Indicators (KPIs) and Key Quality Indicators (KQIs). The creation of these metrics involves a strategic alignment between operational excellence and customer-centricity, focusing on various aspects that directly impact service delivery and customer satisfaction.

Figure 3: Digis Square Model for S-KPIs Creation

SOC SKPIs centers around the following.

  • Handsets Performance
  • Customer Segment Performance
  • HotSpots performance
  • OTTs performance
  • …. Etc
Figure 4: Sample of OTTs S-KPIs

SOC use cases, We  at Digis Squared have more than 70 ready use cases with insights and expected outputs, but use case generation is a continuous task and it shall be endless

  • Customers flip-flopping between radio technologies.
  • Customers with 4G handsets locked onto 3G.
  • Heavy data users with 3G handsets, we offer 4G handsets.
  • VoLTE performance variance across different handsets
  • Geolocation for data streaming activities
  • VIP and enterprise dashboards and proactive monitoring
  • Happy voice and data customers
  • CSFB analysis and delay investigations

Let’s explore a significant use case featuring our product, INOS, specifically the SOC – Active Probing scenario. In this scenario, we implement our INOS Watcher Kits in various high-traffic locations such as hotspots, VIP customer areas, corporate settings, shops, stations, or any other locations designated by the MNO. Subsequently, we establish continuously running scripts across these watchers, enabling these kits to instantly upload testing logs.

These logs are then utilized to populate a customized SOC dashboard hosted on the cloud. This dashboard provides a comprehensive overview of all Service KPIs and KQIs categorized by device, area, location, and/or IMSI. This solution empowers us to monitor service levels in specific areas and proactively identify any potential service issues experienced by customers in those locations.

Figure 5 : INOS SOC Active probing use Case