Insights & EventsCase studies

Non-Terrestrial-Networks (NTN) and telecom vision

The emergence of Low Earth Orbit (LEO) satellites marks a significant advancement in the realm of non-terrestrial networks, particularly in their integration with mobile devices. LEO satellites operate closer to Earth, reducing latency and enabling faster data transmission. Their use in providing global internet coverage directly to mobile devices heralds a new era in connectivity.

The emergence of Low Earth Orbit (LEO) satellites marks a significant advancement in the realm of non-terrestrial networks, particularly in their integration with mobile devices. LEO satellites operate closer to Earth, reducing latency and enabling faster data transmission. Their use in providing global internet coverage directly to mobile devices heralds a new era in connectivity.

With companies like SpaceX, OneWeb, and Amazon’s Project Kuiper launching constellations of LEO satellites, mobile devices stand to benefit from expanded coverage and improved bandwidth.

The prospect of integrating LEO band support into mobile devices opens doors for seamless, high-speed internet access, revolutionizing how individuals experience connectivity on the go.

As LEO satellite constellations become more established, the integration of their capabilities into mobile technology could redefine the standards for mobile connectivity, promising faster, more reliable access for users worldwide.

But now the question is “are Non-Terrestrial Networks (NTN) a threat or an opportunity for Mobile Network Operators (MNOs) and the telecom industry?”

Examining this question uncovers various facets of this emerging technology.

Challenges that will Face MNOs with NTN growth:

  • Competition: NTN, like satellite networks or high-altitude balloons, competes with MNOs by offering connectivity in areas where traditional networks struggle to reach.
  • Infrastructure Costs: Adapting or investing in new infrastructure to match NTN capabilities can be financially burdensome for MNOs.
  • Regulatory Hurdles: Integrating non-terrestrial technologies involves navigating complex regulations, potentially delaying adoption for MNOs.

Opportunities brought to MNOs by NTN:

  • Enhanced Coverage: Collaborating with NTN providers enables MNOs to extend their services to remote areas, expanding their offerings.
  • Improved Resilience: Non-terrestrial networks offer backup options, increasing network reliability, especially in disaster-prone regions.
  • Global Expansion: NTN allows MNOs to tap into new markets and customer bases, widening their reach.

NTN impact on the industry overall:

  • Connectivity Access: NTN fills coverage gaps, fostering digital inclusion and accessibility.
  • Technological Progress: The integration of NTN drives telecom innovation, pushing connectivity boundaries.
  • Market Dynamics: NTN’s presence encourages competitive pricing and innovation, benefiting consumers.
Figure 1: Non-Terrestrial network examples

In summary, Non-Terrestrial Networks pose both challenges and opportunities for MNOs and the industry. Strategic adaptation and collaboration within this evolving network landscape will determine the outcome.

Now, exploring the limitations of NTN:

  • Coverage Constraints: NTN technologies have limitations in serving densely populated or geographically challenging areas.
  • Latency Issues: Satellite-based systems suffer from delays, impacting real-time applications.
  • High Costs: Deployment and maintenance expenses lead to less affordability, especially in developing regions.
  • Spectrum Management Challenges: Multiple systems operating in similar frequencies can cause interference.
  • Chipset Readiness: Despite the numerous claims made by chipset vendors regarding their support for LEO bands, the reality remains that only a handful of mobile devices currently possess the necessary reception capabilities to utilize these bands effectively.
  • Weather Dependence: Weather conditions affect certain NTN systems, causing service disruptions.
  • Capacity Limits: Constraints on simultaneous users and bandwidth affect service quality during peak times.
  • Security Vulnerabilities: Cybersecurity threats and data transmission security are critical concerns.
  • Reliability Challenges: Maintaining reliability, especially in space, faces technical and environmental hurdles.

In conclusion, while NTN offers global connectivity and remote access advantages, addressing these limitations is crucial for its viability in telecom.

NTN Applications across Industries:

  • Satellite Internet: Connects remote areas lacking terrestrial internet access.
  • Disaster Management: Vital in coordinating rescue efforts during crises.
  • Agriculture: Provides real-time data for precision farming.
  • Maritime and Aviation: Ensures continuous connectivity during travel.
  • IoT Connectivity: Supports remote IoT device connections.
  • Energy and Environmental Monitoring: Aids in monitoring remote facilities and environmental research.
  • Education and Rural Connectivity: Bridges the digital divide in remote education.
  • Industries like Mining, Oil & Gas, Tourism, and Defense: Facilitates communication and operations in remote locations.
Figure 2: Non-Terrestrial network Use Cases

These diverse use cases showcase how NTN technologies address connectivity challenges, improving safety, efficiency, and quality of life, becoming an extension of terrestrial connections.